
Many-Core Programming with HMPP 3.0

Write once, deploy many(-core)

Jean-Charles VASNIER

•  Computing power comes from parallelism
o  Hardware (frequency increase) to software (parallel codes) shift
o  Driven by energy consumption : heterogeneity is source of efficiency

•  Context of fast moving hardware targets
o  e.g. fast GPU improvements (RT and HW), new massively parallel CPU
o  Write codes that will last many architecture generations

•  Keeping a unique version of the code, preferably mono-language, is
a necessity
o  Reduce maintenance cost
o  Directive-based approaches suitable
o  Preserve code assets

•  Addressing many-core programming challenge implies
o  Massively parallel algorithms
o  New development methodologies / code architectures
o  New programming tools

Introduction

January 2012 2 www.caps-entreprise.com

1.  About many-cores

2.  Some principles for many-core programming

3.  Methodology to migrate legacy codes

4.  Many-core programming with HMPP 3.0

5.  HMPP Wizard

www.caps-entreprise.com 3 January 2012

Agenda

www.caps-entreprise.com 4 January 2012

Many-Cores

•  Massively parallel devices
o  Thousands of threads needed

Data/stream/vector
parallelism to be
exploited by GPUs
e.g.	 CUDA	 /	 OpenCL	
	

CPU	 and	 GPUs	 linked	 with	 a	
PCIx	 bus	

•  ALF - Amdahl’s Law is Forever
o  A high percentage of the execution time has to be parallel
o  Many algorithms/methods/techniques will have to be reviewed to scale

•  Data locality is expected to be the main issue

o  Limit on the speed of light
o  Moving data will always suffer latency

www.caps-entreprise.com 5 January 2012

Software Main Driving Forces

•  A directive-based approach for many-core
o  CUDA, OpenCL and soon Intel MIC, …

www.caps-entreprise.com 6 January 2012

Addressing many-cores

#pragma hmpp f1 codelet!
myfunc(...){
 ...
 for()
 for()
 for()
 ...
 ...
}

main(){
 ...
#pragma hmpp f1 callsite
 myfunc(V1[k],V2[k]);
 ...
}

GPU
version

CPU
version

Some Principles for
Many-Core Programming

•  Rely on code generation for implementation details
o  Usually not easy to go from a low level API to another low level one
o  Tuning has to be possible from the high level
o  But avoid relying on compiler advanced techniques for parallelism

discovery, …
o  You may have to change the algorithm!

•  An example with HMPP

www.caps-entreprise.com 8 January 2012

Express Parallelism, not Implementation

HMPP	

OpenMP/Threads	

Cuda/OpenCL	

Vector	 ISA	

Code	 generaEon	 process	

N
o	 autom

aEc	
translaEon	

#pragma hmppcg gridify(j,i) !
#pragma hmppcg unroll(4), jam(2)!
 for(j = 0 ; j < p ; j++) {!
 for(i = 0 ; i < m ; i++) {!
 for (k = ...) { ...}!
 vout[j][i] = alpha * ...;!
 }!
 }!

•  Do not hide parallelism with complex coding structure
o  Data structure aliasing, …
o  Deep routine calling sequences
o  Separate concerns (functionality coding versus performance coding)

•  Data parallelism when possible
o  Simple form of parallelism, easy to manage
o  Favor data locality
o  But sometimes too static

•  Kernels level
o  Expose massive parallelism
o  Ensure that data affinity can be controlled
o  Make sure it is easy to tune the ratio vector / thread parallelism

www.caps-entreprise.com 9 January 2012

Exposing Massive Parallelism

•  Data locality
o  Makes easy to move from one address space to another one
o  Makes easy to keep data coherency

•  Do not waste memory
o  Memory per core ratio is not improving

•  Choose simple data structures
o  Enable vector/SIMD computing
o  Use library friendly data structures
o  May come in multiple forms, e.g. sparse matrix representation

•  For instance consider “data collections” to deal with multiple
address spaces or multiple devices or parts of a device
o  Gives a level of adaptation for dealing with heterogeneity
o  Load distribution over the different devices is simple to express

www.caps-entreprise.com 10 January 2012

Data Structure Management

•  Keep code debug-able.

•  Keep serial semantic
o  For instance, implies keeping serial libraries in the application code
o  Directives-based programming makes this easy

•  Ensure validation is possible even with rounding errors
o  Reductions, …
o  Aggressive compiler optimizations

•  Use defensive coding practices
o  Events logging, parameterize parallelism,

add synchronization points, …
o  Use debuggers (e.g. Allinea DDT)

www.caps-entreprise.com 11 January 2012

Debugging Issues

•  Library calls can usually only be partially replaced
o  No one to one mapping between libraries (e.g.BLAS, FFTW, CuFFT, CULA,

LibJacket)
o  No access to all code (i.e. avoid side effects)
o  Don’t create dependencies on a specific target library as much as possible
o  Still want a unique source code

•  Deal with multiple address spaces / multi-GPU
o  Data location may not be unique (copies)
o  Usual library calls assume shared memory
o  Library efficiency depends on updated data location (long term effect)

•  Libraries can be written in many different languages
o  CUDA, OpenCL, HMPP, etc.

•  There is not one binding choice depending on applications/users
o  Binding needs to adapt to uses depending on how it interacts with the remainder

of the code
o  Choices depend on development methodology

www.caps-entreprise.com 12 January 2012

Dealing with Libraries

A Methodology for
Legacy Code Migration

•  Mastering migration cost
o  Ensuring an adequate return on investment
o  Minimizing risk as well as manpower

•  Producing code that will last many architecture generations
o  It is safe to assume that the node architecture may change with the renewal of the

computer

•  Writing developer friendly code
o  Application developers may not be multicore / accelerator / parallelism savvy
o  Once ported, the application still needs to evolve

•  Keeping a unique version, preferably mono-language, of the codes
o  Reduce maintenance cost

•  Able to use libraries
o  No one-to-one replacement (e.g. FFT libraries)
o  Must interact with non library accelerated kernels

Legacy Codes Migration Challenges

January 2012 14 www.caps-entreprise.com

www.caps-entreprise.com 15

Dealing with Legacy Codes

January 2012

THE	 CRITICAL	 STEP	

www.caps-entreprise.com 16 January 2012

Go / No Go for GPU Target

Go
•  Dense hotspots
•  Fast kernels
•  Low CPU-GPU data transfers
•  Prepare to manycore parallelism

No Go
•  Flat profile
•  Slow GPU kernels (i.e. no speedup to

be expected)
•  Binary exact CPU-GPU results

(cannot validate execution)
•  Memory space needed

Many-Core Programming with
HMPP 3.0

•  Remote procedure calls (RPCs) on accelerator devices
o  Parallel loop nests to exploit multiple compute units

www.caps-entreprise.com 18

Scope of HMPP 3.0 Programming

main(){
 ...
#pragma hmpp f1 callsite
 myfunc(V1[k],V2[k]);
 ...
}

#pragma hmpp f1 codelet!
myfunc(...){
 ...
 for()
 for()
 for()
 ...
 ...
}

GPU
version

CPU
version

January 2012

•  A set of directives to program
hardware accelerators
o  Drive your HWAs, manage transfers

•  A complete toolchain to build
manycore applications
o  Build your hybrid application

•  A runtime to adapt to platform
configuration
o  With its API

www.caps-entreprise.com 19 January 2012

HMPP Comes in 3 Parts

•  C and Fortran GPU programming directives
o  Define and execute GPU-accelerated versions of code
o  Optimize CPU-GPU data movement
o  Complementary to OpenMP and MPI

•  A source-to-source hybrid compiler
o  Generates CUDA and OpenCL kernels
o  Works with standard compilers and target tools
o  Tuning directives to optimize GPU kernels

•  A runtime library
o  Allocates and manages computing resources
o  Dispatches computations on CPU and GPU cores
o  Scales to multi-GPUs systems

www.caps-entreprise.com 20

HMPP Overview

January 2012

•  HMPP drives the whole
compilation

o  Host application compilation
•  HMPP runtime is linked to the

host part of the application

o  Codelet production
•  Target code is produced
•  A dynamic library is built

www.caps-entreprise.com 21

HMPP Compilation Paths

January 2012

$ hmpp gcc myProgram.c

www.caps-entreprise.com 22

HMPP Directives Drive Hybrid Applications

HMPP	 RunEme	

HWA	 Data	

DirecEves	

Codelet	

HW-‐specific	
code	 generaEon	

HMPP	
applicaEon	

DirecEves	

January 2012

•  Dynamic data management mechanism
o  Mirrors identified by their host address
o  Simplifies management of data with less directives

•  Multi-device programming
o  Exploit multiple devices in one compute node
o  Distribute collections of data over multiple devices

•  New run-time API
o  Three bindings for C, C++ and Fortran 90-2003
o  Low level OpenCL style programming with OpenCL/CUDA kernel

generation
•  Open library integration system

o  CPU and GPU libraries coexist in same binary (proxy mechanism)
o  Data sharing between HMPP user codelets and libraries
o  User can write their own HMPP proxies
o  Proxies provided for cuBLAS, CULA, cuFFT, keeping CPU API.

www.caps-entreprise.com 23

What’s New in HMPP 3.0?

January 2012

www.caps-entreprise.com 24 January 2012

Step One: Find Hot Spots

•  Find hotspots, estimate potential (e.g. Amdahls’ Law)
•  Check CPU performance, optimize CPU execution
•  Setup a validation process
•  Estimate parallelism, complexity, …

Project	
Analysis	

GPU	
Por:ng	

Applica:on	 Tuning	

 . . . !
 pr2c = fftw_plan_dft_r2c_1d(n, idata_real, …!
 pc2r = fftw_plan_dft_c2r_1d(n, odata_intermediate, …!
 fftw_execute(pr2c);!
 derive(n, odata_intermediate, cf);!
 fftw_execute(pc2r);!
 fftw_destroy_plan(pr2c);!
 fftw_destroy_plan(pc2r);!
 . . .!

void derive(int nx, double _Complex …) {!
 int i;!
 for (i=1; i<nx/2; ++i) {!
 wrkq[i] = (0+I-1) * wrkq[i] * cf;!
 }!
 wrkq[0] = 0.0+I*0; !
 wrkq[nx/2] = 0.0+I*0; !
}!

30%	

•  Find hotspots, estimate potential (e.g. Amdahls’ Law)
o  Using profiling tools
o  gprof, oprofile, …
o  Code instrumentation (gettimeofday(), …)
o  …

•  Check CPU performance
o  Is the machine enough loaded ?
o  Optimize CPU execution, CPU code

•  Setup a validation process
o  To validate that after each porting steps results are correct

•  Estimate hot spots parallelism, complexity, …

www.caps-entreprise.com 25 January 2012

Analysis of the CPU Code

•  Spikes, bumpy profile
o  Few sections of code to focus on for a good speedup factor
o  The less functions to port, the less cost it involves

•  Anyway, a GPU-friendly profile is
o  A profile for which the sections of code to focus on are data-parallel

•  Don’t forget the Gustafson’s law
o  You may discover computational intensive kernels just by varying the

amount of their input data
o  Sometimes the parallelism is placed at compute node level, with

independent data distributed over the nodes
•  Then gather groups of data onto a same node and parallelize at hardware

level

www.caps-entreprise.com 26

What is a GPU-friendly Profile

January 2012

•  Exhibit parallelism
•  Push the code onto the GPU
•  Validate execution

www.caps-entreprise.com 27 January 2012

Initial Porting, Highlighting Parallelism Project	
Analysis	 GPU	

Por:ng	

Applica:on	 Tuning	

#pragma hmpp <g> group, target=CUDA[/OpenCL]!
#pragma hmpp <g> derive codelet, args[*].transfer=atcall!
void derive(int nx, double _Complex …) {!
 int i;!
 for (i=1; i<nx/2; ++i) {!
 wrkq[i] = (0+I-1) * wrkq[i] * cf;!
 }!
 wrkq[0] = 0.0+I*0; !
 wrkq[nx/2] = 0.0+I*0; !
}!

#pragma hmpp <g> group, target=CUDA[/OpenCL]!
#pragma hmpp <g> derive codelet, args[*]transfer=atcall	

Build	 a	 GPU	 version	
of	 the	 funcEon	 	

#pragma hmpp sgemm codelet, target=CUDA:OPENCL, args[*].transfer=atcall
extern void sgemm(int m, int n, int k, float alpha,
 const float vin1[n][n], const float vin2[n][n],
 float beta, float vout[n][n]);

int main(int argc, char **argv) {
 /* . . . */

 for(j = 0 ; j < 1000 ; j++) {
#pragma hmpp sgemm callsite
 sgemm(size, size, size, alpha, vin1, vin2, beta, vout);
 }
 /* . . . */
 }

•  Declare and call a GPU-accelerated version of a function

www.caps-entreprise.com 28 January 2012

Accelerate Codelet Function

Declare CUDA and
OPENCL codelets

Synchronous codelet call

•  Select implementation for library calls and
hotspots

•  Insert calls to execute on GPU

www.caps-entreprise.com 29 January 2012

Initial Porting, Highlighting Parallelism Project	
Analysis	 GPU	

Por:ng	

Applica:on	 Tuning	

 . . .!
#pragma hmpp <g> allocate!
!
#pragma hmppalt cufft call, name="fftw_plan_dft_r2c_1d"!
 pr2c = fftw_plan_dft_r2c_1d(n, idata_real, …);!
#pragma hmppalt cufft call, name="fftw_plan_dft_c2r_1d"!
 pc2r = fftw_plan_dft_c2r_1d(n, odata_intermediate, …);!
#pragma hmppalt cufft call, name="fftw_execute"!
 fftw_execute(pr2c);!
#pragma hmpp <g> derive callsite!
 derive(n, odata_intermediate, cf);!
 . . .!
#pragma hmpp <g> release!
 . . .!

Call	 GPU	 version	 of	 library	 call	

Call	 GPU	 version	 of	 derive	

#pragma hmpp <g> derive callsite!
 derive(n, odata_intermediate, cf);!
	

#pragma hmppalt cufft call, name="fftw_execute"!
 fftw_execute(pr2c);!

•  First thing you want is to validate GPU results
o  If your algorithm produces wrong results

•  Maybe you have a numerical stability problem
•  Or your algorithm is not enough parallel
•  …

•  Insert the codelet directive before the definition of the function to
offload
o  Use the ATCALL transfer policy
o  HMPP will automatically transfer

•  Scalars as INPUT
•  Arrays, pointers, … as INPUT and OUTPUT

•  Insert the HMPPALT directive before calls to library functions
•  Validate the result

o  To check that the GPU is a valid target for application
o  It may take time to execute the application

•  Due to all data transfers
•  And not optimized kernels

www.caps-entreprise.com 30 January 2012

First Porting Steps using HMPP 3.0

•  Reduce CPU-GPU communication overhead
•  Exploit reuse of data on the GPU

www.caps-entreprise.com 31 January 2012

Transfer Optimizations Project	
Analysis	

GPU	
Por:ng	

Applica:on	 	 	 	 	 	 	 	 	 	 	 	 	 Tuning	

int main(int argc, char **argv) {
#pragma hmpp sgemm acquire
#pragma hmpp sgemm allocate, data[vin1;vin2;vout], size={size,size}
 . . .
#pragma hmpp sgemm advancedload, data[vin1;vin2;vout]

 for(j = 0 ; j < 1000 ; j++) {
#pragma hmpp sgemm
 sgemm(size, size, size, alpha, vin1, vin2, beta, vout);

 }
 . . .
#pragma hmpp sgemm delegatedstore, data[vout]

#pragma hmpp sgemm free
#pragma hmpp sgemm release

Preload data

Iterate 1000 times
without data transfer

Download results

•  Mirrored data or simply mirror
o  An area of memory on the host is mirrored

on the accelerator
o  The HMPP runtime dynamically makes the

link between the host address and the
device address

•  Simple data management
o  Few directives to manage mirrored data

•  Easy to dynamically allocate and free a
mirror
o  Use the ALLOCATE and FREE directives

Storage Policy

www.caps-entreprise.com 32

GPU	

CPU	

M1	 M2	 M3	

X	 Y	 Z	

@ Y	 X	 Z	

Compute Asynchronously

•  Perform CPU/GPU computations asynchronously

www.caps-entreprise.com

int main(int argc, char **argv) {
 /* . . . */
#pragma hmpp sgemm allocate, data[vin1;vin2;vout], size={size,size}
 /* . . . */

 for(j = 0 ; j < 1000 ; j++) {
#pragma hmpp sgemm callsite, asynchronous
 sgemm(size, size, size, alpha, vin1, vin2, beta, vout);
 /* . . . */
 }

 /* . . . */
#pragma hmpp sgemm synchronize
#pragma hmpp sgemm delegatedstore, data[vout]
#pragma hmpp sgemm release
}

Execute
asynchronously

33 January 2012

•  CODELET : Specialize a subroutine
•  CALLSITE : Specialize a call statement
•  SYNCHRONIZE : Wait for completion of the callsite
•  ACQUIRE : Set a device for the execution
•  ALLOCATE : Allocate memory
•  FREE : Free allocated memory
•  RELEASE : Release HWA
•  ADVANCEDLOAD : Explicit data transfer CPU -> HWA
•  DELEGATEDSTORE : Explicit data transfer HWA -> CPU
•  GROUP : Groups codelets

»  Directives in green are declarative
»  Directives in Red are operational

www.caps-entreprise.com 34

HMPP Directives Overview

January 2012

www.caps-entreprise.com 35

What About Directives for Code Generation?

HMPP	 RunEme	

HWA	 Data	

DirecEves	

Codelet	

HW-‐specific	
code	 generaEon	

HMPP	
applicaEon	

DirecEves	

January 2012

•  Directive-based GPU kernel code
transformations

www.caps-entreprise.com 36 January 2012

Improving Code Generation Project	
Analysis	

GPU	
Por:ng	

Applica:on	 	 	 	 	 	 	 	 	 	 	 	 	
Tuning	

 #pragma hmppcg unroll(4), jam(2), noremainder!
 for(j = 0 ; j < p ; j++) {!
 #pragma hmppcg unroll(4), split, noremainder!
 for(i = 0 ; i < m ; i++) {!
 double prod = 0.0;!
 double v1a,v2a ;!
 k=0 ;!
 v1a = vin1[k][i] ;!
 v2a = vin2[j][k] ;!
 for(k = 1 ; k < n ; k++) {!
 prod += v1a * v2a;!

! !v1a = vin1[k][i] ;!
! !v2a = vin2[j][k] ;!

 }!
 prod += v1a * v2a;!
 vout[j][i] = alpha * prod + beta * vout[j][i];!
 }!
 }!

#pragma hmppcg unroll(4),split, noremainder	

Use	 pragma	 to	 preserve	 	
CPU	 code	

•  By adding properties
o  1D or 2D gridification

•  Applying code transformations
o  Loop tiling, unroll, jam, permute, fuse, …

•  Using target specific directives
o  Micro architecture management (warp size…)
o  Memory management (CUDA shared memory, constant…)

www.caps-entreprise.com 37

Codelet Tuning Directives for High Level
Optimization

High level application tweaking

January 2012

•  Spread computations on available devices
•  Manage data over several memory spaces

www.caps-entreprise.com 38 January 2012

Scaling to Many-many cores Project	
Analysis	

GPU	
Por:ng	

Applica:on	 	 	 	 	 	 	 	 	 	 	 	 	 Tuning	

CPU	 0	 GPU	 0	 CPU	 1	 GPU	 1	 GPU	 2	

float data[n][x][y];
#pragma hmpp parallel, device=“k%3"
for(k=0;k<n;k++) {
 #pragma hmpp <MyGroup> f1 callsite
 myparallelfunc(&data[k],n);
 }

Main	 memory	 Device	
mem	

Device	
mem	

Device	
mem	

d0	 d1	 d2	 d0	 d1	 d2	

www.caps-entreprise.com 39 January 2012

Multi-GPUs sample

#pragma hmpp <mygroup> group, target=CUDA

#pragma hmpp <mygroup> doit codelet, args[*].mirror, &
#pragma hmpp & args[*].transfer=manual
void doit(float A[1234]) {
...
}

float X[100][1234] ; // I have 100 arrays
#pragma hmpp <mygroup> acquire, device=0
#pragma hmpp <mygroup> acquire, device=1
...
for (k=0;k<100;k++) {
 float *ptr = X[i] ;
 #pragma hmpp <mygroup> allocate, data[ptr], size={1234}, &
 #pragma hmpp & device=”k%2”
}
#pragma hmpp parallel
for (k=0;k<100;k++) {
 #pragma hmpp <mygroup> advancedload, data[“X[k]”]
 #pragma hmpp <mygroup> doit callsite
 doit(X[k]) ;
 #pragma hmpp <mygroup> delegatedstore, data[“X[k]”]
}

Acquire two devices

Execute the codelets on the
device that owns each mirror

Allocate data on a device
then the other

•  Support for function calls inside codelets or regions
o  Functions called in codelets can be defined in other files
o  Avoid code duplication

extern.c	 	

#include	 "sum.h"	
	
int	 main(int	 argc,	 char	 **argv)	 {	
	 	 int	 i,	 N	 =	 64;	
	 	 float	 A[N],	 B[N];	
	 	 ...	
	 	 #pragma	 hmpp	 cdlt	 region,	 args[B].io=inout,	 target=CUDA	
	 	 {	 	 	 	 	
	 	 	 	 #pragma	 hmppcg	 extern,	 sum	
	
	 	 	 	 for(int	 i	 =	 0	 ;	 i	 <	 N	 ;	 i++)	
	 	 	 	 	 	 B[i]	 =	 sum(A[i],	 B[i]);	
	 	 }	
	 	 ...	
}	

www.caps-entreprise.com 40 January 2012

Extern Functions

‘sum’ is an external
function

Import external
declaration

sum.h	 	

#ifndef	 SUM_H	
#define	 SUM_H	
	
float	 sum(float	 x,	 float	 y);	
	
#endif	 /*	 SUM_H	 */	

sum.c	 	

#include	 "sum.h"	
	
#pragma	 hmpp	 function,target=CUDA	
float	 sum(float	 x,	 float	 y)	 {	
	 	 return	 x+y;	
}	

Declare ‘sum’ as a
function called in a

codelet

•  Available bindings in C/C++ and Fortran
o  Low level OpenCL style programming with OpenCL/CUDA kernel

generation
o  C++ API throws exceptions

•  API call allows you to
o  Acquire a device
o  Allocate data
o  Transfer data
o  Launch codelets
o  Free data
o  Asynchronous operations
o  …

•  Really useful for C++ programmers

www.caps-entreprise.com 41 January 2012

HMPP Runtime API

•  Abstract the programming of manycore architectures
o  A rich set of programming and tuning directives
o  Distribute computations to exploit CPU and GPU cores in a node
o  Mix CPU and GPU libraries in same binary
o  Incrementally develop and port applications

•  An open source-to-source compiler
o  Work with standard compilers and hardware vendor tools
o  Ease maintenance by avoiding different languages
o  Preserve legacy code

www.caps-entreprise.com 42

HMPP3 Summary

January 2012

HMPP Wizard

www.caps-entreprise.com 44 November 2011

HMPP Wizard
GPU library usage detection

•  HMPP wizard synthetizes metrics based on static and
dynamic information
o  The result is shown as a HTML page

•  Getting dynamic information from profilers
o  Gprof
o  Oprofile

•  Getting static information from code analysis
o  Library calls
o  Code transformation inside codelets

www.caps-entreprise.com 45 January 2012

HMPP Wizard

•  Parallelism is about performance!

•  Track Amdahl’s Law Issues

o  Serial execution is a killer
o  Check scalability
o  Use performance tools

•  Add performance measurement in the code
o  Detect bottleneck asap
o  Make it part of the validation process

www.caps-entreprise.com 46 January 2012

Performance Measurements

HMPP	 PerfAnalyzer	 View	

Accelerator Programming Model Parallelization

Directive-based programming GPGPU Manycore programming

Hybrid Manycore Programming HPC community

 Petaflops Parallel computing HPC open standard

Multicore programming Exaflops NVIDIA Cuda

Code speedup Hardware accelerators programming

 High Performance Computing

Parallel programming interface
 Massively parallel

 Open CL

hZp://www.caps-‐entreprise.com	
hZp://twiZer.com/CAPSentreprise	

	
	

Weather Forecasting

A	 global	 cloud	 resolving	 model	

www.caps-entreprise.com

•  Resource spent
o  1 man-month (part of the code

already ported)

•  GPU C1060 improvement
o  11x over serial code on

Nehalem

•  Main porting operation
o  reduction of CPU-GPU

transfers
•  Main difficulty

o  GPU memory size is the
limiting factor

48

Computer vision & Medical imaging

MultiView Stereo

www.caps-entreprise.com 49

•  Resource spent
o  1 man-month

•  Size
o  ~1kLoC of C99 (DP)

•  CPU Improvement
o  x 4,86

•  GPU C2050 improvement
o  x 120 over serial code on

Nehalem

•  Main porting operation
o  Rethinking algorithm

January 2012

Biosciences, phylogenetics

Phylip, DNA distance

•  In association with the HMPP Center Of
Excellence for APAC

•  Computes a matric of distances between DNA
distances

•  Resource spent
o  A first CUDA version developed by Shanghai

Jiao Tong University, HPC Lab
o  1 man-month

•  Size
o  8700 lines of C code, one main kernel (99%

of the execution time)

•  GPU C2070 improvement
o  x 44 over serial code on Nehalem

•  Main porting operation
o  Kernel parallelism & data transfer coalescing

leverage
o  Conversion from double precision to simple

precision computation

www.caps-entreprise.com 50 January 2012

Oil & Gas

GPU-accelerated seismic
depth imaging

•  1 GPU accelerated machine = 4.4
CPU machines
o  GPU: 16 dual socket quadcore Intel

Hapertown nodes
connected to 32 GPUs

o  CPU: 64 dual socket quadcore Intel
Hapertown nodes

www.caps-entreprise.com 51

GPU
accelerated

Rack
4.4 CPU Racks

p e r f o r m a n c e

January 2012

www.caps-entreprise.com 52 January 2012

Guillaume	 Colin	 de	 Verdière,	 Onera	 XtremCFD	 Workshop,	 7th	 of	 October,	 2011	

